
Git introduction,
course
requirements and
workflow
Kharkiv, 2019

Agenda

1. Introduction and motivation
2. About git
3. Main rules
4. How to implement these rules
5. Project workflow

What's a VCS?

Version control is a system that records changes to
a set of files over time so that you can recall
specific versions later
Also usually it is used for
• Collaboration
• CI/CD interactions
• Analysis
• Backups and release management
• Primary source for effort tracking

VCS Types

rcs, dropbox?

Local VCS Centralized VCS

CVS, Subversion и Perforce Git, Mercurial, Bazaar

Distributed VCS

Distributed VS Centralized
VCS
Advantages of distributed VCS
• Most of operations are local.
• Repository data and history available on each
local copy, so you could do a lot of operation
without internet connection.
• If central copy of data will be lost, any local copy
could be used to restore central.
• Lightweight branching.
• Possibility of working with several remotes in
one time.

Distributed VS Centralized
VCS
Advantages of centralized VCS
• Storing only current copy of data in a local
repository could be an advantage.
• Easier workflow for novice users.

LINUS TORVALDS

Creator of Linux and Git
● Nobody actually creates perfect code the first

time around, except me. But there's only one of
me.

● I'm an egotistical bastard, and I name all my
projects after myself. First Linux, now git

What is git

● Git is a distributed version control system.

● Git is used in many commercial and open source
projects like Linux Kernel, OpenGL Mesa library,
OpenCV etc.

● There are many web-based hosting services for git
like github, gitlab, bitbucket.

How to install git
Via binary installer (RPM based distro):
$ sudo yum install git-all

If you 're on a Debian-based distribution like Ubuntu, Debian
$ sudo apt-get install git-all

Windows
http://git-scm.com/download/win

Mac OS using brew
$ brew install git
Or download package from
https://git-scm.com/download/mac

What's inside?

• Git thinks of its data
more like a series of
snapshots of a
miniature filesystem.
Git

• To be efficient, if files
have not changed, Git
doesn’t store the file
again, just a link to the
previous identical file it
has already stored.

• Git thinks about its
data more like a
stream of snapshots

Git Terminology
● Repository / Repo: the .git filesystem which contains the project history and

settings
● Staging area / index / cache: files (or 'hunks' of code) which will be committed
● Working Copy: the directory you're working in, may not be staged or committed

yet
● Hash: A checksum which acts as a unique identifier for your commit. Also

guarantees file integrity.
● Commit: create a snapshot or restore point, to which you can return in future (n:

the snapshot itself)
● Checkout: sync your Working Copy with the selected commit
● Clone: to download a copy of a repository

Git Terminology
● Branch: an active line of development
● Head: a reference to the branch you're working on
● Master: the default development branch
● Merge: to integrate changes from another branch into the current
● Tag: a label which acts like a 'bookmark', generally used for tagging release

versions.
● Rebase: funky merge… think cherry picks & hard reset: Using 'git cherry-pick' to

Simulate 'git rebase'
● Fork: to make modifications to someone else's project
● Push: send changes to a remote server
● Fetch: receive changes from a remote server
● Pull: Fetch & merge in one operation

Git Terminology

Git hosting services

• Web GUI tools for team
collaboration

• Code review tools
Integrations with bug
tracking systems

• Useful views for analytics

State lifecycle
• New (Untracked): file

was recently created

• Modified: you have
changed the file but
have not committed it
to your local database

• Staged: you have
marked a modified file
in its current version
to go into your next
commit snapshot.

• Committed
(Unmodified): the
data is safely stored in
your local database

Creating git repository

Init
$ git init
$ git init <folder>

Clone
$ git clone <remote repository url>

Git configuration and help
$ git config name "value" # set property
$ git config --global # for current user
$ git config --system # for all users
$ git config --global user.name "Ivan Ivanov"
$ git config --list # config for current repo
$ git config --global core.editor
"'C:/Program Files (x86)/Notepad++/notepad+
+.exe' -multilnst -notabbar -nosession -
noPlugin“
For other setting and editor configuration loot at
https://swcarpentry.github.io/git-novice/02-setup/

https://swcarpentry.github.io/git-novice/02-setup/

Git help

$ git help <verb>
$ git <verb> --help
$ man git-<verb>

.gitignore
This is a file, which you could create in the root of your repository. All files, which
are match patterns from gitignore, would be untracked by default. This could be
binary files; files, which are generated by IDE, logs, ect. So all of this files exist
in you project directory, but you will never want to commit them to repository.
The rules for the patterns you can put in the .gitignore file are as follows:
• Blank lines or lines starting with # are ignored.
• Standard glob patterns work.
• You can start patterns with a forward slash (/) to avoid recursivity.
• You can end patterns with a forward slash (/) to specify a directory.
• You can negate a pattern by starting it with an exclamation point (!).

.gitignore

no .a files
*.a
but do track lib.a,
even though you're ignoring .a files above
!lib.a
ignore all files in the build/ directory
build/
ignore all .pdf files in the doc/ directory
doc/**/*.pdf

Commit

Commit is basic unit which includes the change itself
and its description. Another common name is patch.

Each commit is recognized using its commit id, it is
a SHA256 checksum of the diff and the message.

Note that commit message has timestamp, so even
applying the same change on the same base, but in
different time, will result in different commit ids.

To create a commit you need to:

< make changes >

$ git diff

$ git add < files >

$ git commit

$ git show

Diff and show commands and needed to ensure that changes
are valid. Commit rules will be described in next chapter.

Branch

A branch in Git is simply a movable pointer to one of
the commits. Every time you commit, it moves
forward automatically.

To create a branch you need to:

$ git checkout -b new_name <commit id>

* commit id may be either hash, local or remote
branch name, HEAD, HEAD~1 etc.

Branches are usually created to implement some
feature or fix. After done, branch needs to be
combined with the main (master) branch.

This can be done using merge or rebase methods.

$ git checkout master

$ git merge feature

$ git rebase feature --onto master

Useful resources

https://git-scm.com/doc

https://githowto.com/

https://kinsta.com/knowledgebase/what-is-github/

https://git-scm.com/doc
https://githowto.com/
https://kinsta.com/knowledgebase/what-is-github/

$ git checkout -b iss53

Switched to a new branch ’iss53’

[working on iss53]
$ git commit -a -m “issue53 add footer”

$ git checkout master

Switched to branch ’master
$ git checkout -b hotfix
Switched to a new branch ’hotfix‘

[do some fixes]
$ git commit -a -m “fix something”

$ git branch -d hotfix

Deleted branch hotfix (was 3a0874c).
$ git checkout iss53 Switched to
branch ’iss53’
[Finish working on iss53]

$ git commit -a -m ’finish [issue
53]’

$ git checkout master
$ git merge hotfix
Updating f42c576..3a0874c
Fast-forward

Branching & merging workflow

Merge hell

Remote and local branches

Remote and local branches

Merge vs Rebase

$ git checkout master
$ git merge experiment

Rebasing

$ git checkout experiment
$ git rebase master

2. Main rules

Every step (commit, branch, pull request etc) in the
work process should follow the code style and
processual rules.

This is mandatory for the fast and smooth workflow.

Commit requirements

● Use signature when committing, this will be
automatically done by the $ git commit -s (name
needs to be set in ~/.gitconfig).

● No more than 72 characters on line (use your
signature string as a basic ruler).

● Empty line between title and description and
between description and signature.

Commit title should be like:

Topic: <Action> <the rest title text>

● Topic: describes the area of changes, e.g.
Lesson1: or LCD:

● Action: Add, Fix, Implement … (not added,
implemented). Should start from capital letter.

● The whole title should give enough info about
the commit when using $ git log --oneline.

● No dot at the end of the title.

Commit description should describe why and how it
was done, and not what was done (this is visible in
diff).

For example, a bad description: Changed short to int.

The correct one should be: Moved to a bigger data
type because of overflow in some corner cases.

Description is not needed in the “title says it all”
cases.

● Do not mix several different actions in one
commit: split them in several. For example, code
style fixes and the change itself.

● Always check your code for code style
compliance. In this project we use a kernel
style.

● Branch at each commit should be buildable and
working. Do not add constants (header) and their
usage (code) in different commits.

● Do not create patches to unmerged
patches, fix the original ones.

Always check your code
before publishing!

The possible ways:

1. git show
2. Setup formatting in IDE/editor
3. linux/scripts/checkpatch.pl
4. cppcheck

2.2 Branch requirements

● Always create branches even for single-commit
changes.

● Local branch names are up to you, but global
names should be meaningful.

These both are needed for pull requests.

2.3. Pull request
requirements
Pull requests are used to notify others that you
pushed some changes (a branch) to your github
repository.

Each pull request has topic and description, it should
follow the same rules as for commit (except 72
characters of cause, the markdown syntax gives
much more features).

3. How to implement these
rules
Of cause by following them initially, but...

The main problem comes from the need to change a
commit after testing or review (remember, no
patches to unmerged patches).

There are two cases there:

● Modify only last commit;
● Modify commit (s) in the middle.

How to change the last
commit
1. Do the changes
2. $ git add files (Don’t forget!)
3. $ git commit --amend

To only change the title or message, use only

$ git commit --amend

How to change commit in the
middle (straightforward way)

Let’s assume that branch “featureX” contains the following
commits:

55555 xxx: Commit 5
44444 xxx: Commit 4
33333 xxx: Commit 3
22222 xxx: Commit 2
11111 xxx: Commit 1
And it is needed to make changes to the commit 33333

$ git checkout -b temp1 33333

Do the changes
$ git add
$ git commit --amend

$ git checkout featureX

$ git rebase 33333 --onto temp1

Why 33333 and not 44444: we rebasing state after
33333 so the first commit applied will be 44444.

The same operations are used for inserting commits.

Interactive rebase is a very
powerful tool
git rebase -i HEAD~10

● You will see the table with the order how commits will
be applied.

● You may change the order by simply moving the lines.
● You can change the action with each commit: reword

(change the description without touching changes),
edit or squash (combine several commits into one).

● Add --root to include first initial commit.

5. Create a pull request request in github web
interface from lesson02 in your fork to your.name in
the gl-kernel-training-2018

6. Set label ready and assign reviewers if required

7. After successful review, megre the PR

https://github.com/Kernel-GL-HRK/gl-kernel-training-2018

Thank you!

	Slide 1
	Agenda
	What's a VCS?

	VCS Types
	Distributed VS Centralized VCS
	Distributed VS Centralized VCS
	LINUS TORVALDS
	What is git
	How to install git
	What's inside?
	Git Terminology
	Git Terminology
	Git Terminology
	Git hosting services
	State lifecycle
	Creating git repository
	Git configuration and help
	Git help
	.gitignore
	.gitignore
	Commit
	Slide 22
	Branch
	Slide 24
	Useful resources
	Branching & merging workflow
	Merge hell
	Remote and local branches
	Remote and local branches
	Merge vs Rebase
	Rebasing
	2. Main rules
	Commit requirements
	Slide 34
	Slide 35
	Slide 36
	Always check your code before publishing!
	2.2 Branch requirements
	2.3. Pull request requirements
	3. How to implement these rules
	How to change the last commit
	How to change commit in the middle (straightforward way)
	Slide 43
	Interactive rebase is a very powerful tool
	Slide 45
	Slide 46

