
Linux Kernel
Training

Concurrency and
Synchronization

General Concepts

Agenda

1. Processes & Threads
● Manual creation and management

2. Mutexes
3. Conditional Variables
4. Semaphores
5. Pros & Cons

Process
 Processes contain information about program resources and program state:
• PID,PGID, UID, GID, EUID, EGID, etc.
• Environment
• Working directory
• Program instructions
• Registers
• Stack
• Heap
• File descriptors
• Signal actions
• Shared libraries
• Inter-process communication tools (message queues, pipes, semaphores,

or shared memory).

A Thread?

• Definition: sequence of related instructions executed independently of

other instruction sequences

• A thread can create another thread

• Each thread maintains its current machine state

• Relationship between user-level and kernel-level threads – 1:1 (user-

level thread maps to kernel-level thread)

• Threads share same address space but have their own private stacks

• Thread states: ready, running, waiting (blocked), or terminated

Process and Threads within a
Process

Thread-safeness
Thread-safeness: in a nutshell, refers an application's ability to execute multiple

threads simultaneously without "clobbering" shared data or creating "race" conditions.

For example, suppose that your application creates several threads, each of which

makes a call to the same library routine:

• This library routine accesses/modifies a global structure or location in memory.

• As each thread calls this routine it is possible that they may try to modify this global

structure/memory location at the same time.

• If the routine does not employ some sort of synchronization constructs to prevent

data corruption, then it is not thread-safe.

Thread-safeness

The Pthreads API
The subroutines which comprise the Pthreads API can be informally grouped into four

major groups:

Thread management: Routines that work directly on threads - creating, detaching,

joining, etc. They also include functions to set/query thread attributes (joinable,

scheduling etc.)

Mutexes: Routines that deal with synchronization, called a "mutex", which is an

abbreviation for "mutual exclusion". Mutex functions provide for creating, destroying,

locking and unlocking mutexes. These are supplemented by mutex attribute functions

that set or modify attributes associated with mutexes.

The Pthreads API
Condition variables: Routines that address communications between threads that

share a mutex. Based upon programmer specified conditions. This group includes

functions to create, destroy, wait and signal based upon specified variable values.

Functions to set/query condition variable attributes are also included.

Synchronization: Routines that manage read/write locks and barriers.

Naming conventions: All identifiers in the threads library begin with

pthread_.

The Pthreads API
Routine Prefix Functional Group

pthread_ Threads themselves and miscellaneous subroutines

pthread_attr_ Thread attributes objects

pthread_mutex_ Mutexes

pthread_mutexattr_ Mutex attributes objects.

pthread_cond_ Condition variables

pthread_condattr_ Condition attributes objects

pthread_key_ Thread-specific data keys

pthread_rwlock_ Read/write locks

pthread_barrier_ Synchronization barriers

Thread Creation
Initially, main() comprises a default thread.

pthread_create(thread, attr, start_routine, arg) creates a new thread and makes it

executable.

• thread: An opaque, unique identifier for the new thread returned by the subroutine.

• attr: An opaque attribute object that may be used to set thread attributes, or NULL

for the default values.

• start_routine: the C routine that the thread will execute once it is created.

• arg: A single argument that may be passed to start_routine. It must be passed by

reference as a pointer cast of type void. NULL may be used if no argument is to be

passed.

Thread Termination
pthread_exit (status)
pthread_cancel (thread)
pthread_attr_init() and pthread_attr_destroy() are used to initialize/destroy the thread
attribute object.
Other routines are then used to query/set specific attributes in the thread attribute
object. Attributes include:
 Detached or joinable state
 Scheduling inheritance
 Scheduling policy
 Scheduling parameters
 Scheduling contention scope
 Stack size
 Stack address
 Stack guard (overflow) size

Joining and Detaching Threads
pthread_join (threadid,status)
pthread_detach (threadid)
pthread_attr_setdetachstate (attr,detachstate)
pthread_attr_getdetachstate (attr,detachstate)

Mutexes
Blocking mutual exclusion lock.
pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_init (mutex,attr)
pthread_mutex_destroy (mutex)

pthread_mutexattr_init (attr)
pthread_mutexattr_destroy (attr)

pthread_mutex_lock (mutex)
pthread_mutex_trylock (mutex)
pthread_mutex_unlock (mutex)

Conditional Variables
They allow threads to synchronize based upon the actual value of data.
pthread_cond_t myconvar = PTHREAD_COND_INITIALIZER;

pthread_cond_init (condition,attr)
pthread_cond_destroy (condition)

pthread_condattr_init (attr)
pthread_condattr_destroy (attr)

pthread_cond_wait (condition,mutex)
pthread_cond_signal (condition)
pthread_cond_broadcast (condition)

Semaphore
Semaphore is a typically controls access to limited resources, i.e.
permit a limited number of threads to execute a section of the code
• similar to mutexes
• should include the semaphore.h header file
• semaphore functions have sem_ prefixes

int sem_init(sem_t *sem, int pshared, unsigned int value)
int sem_destroy(sem_t *sem)
int sem_post(sem_t *sem)
int sem_wait(sem_t *sem)

Mutex vs. Semaphore
The Toilet Example (c) Copyright 2005, Niclas Winquist ;)

Mutex:
Is a key to a toilet. One person can have the key - occupy the toilet - at the time. When
finished, the person gives (frees) the key to the next person in the queue.

Semaphore:
Is the number of free identical toilet keys. Example, say we have four toilets with
identical locks and keys. The semaphore count - the count of keys - is set to 4 at
beginning (all four toilets are free), then the count value is decremented as people are
coming in. If all toilets are full, ie. there are no free keys left, the semaphore count is 0.
Now, when eq. one person leaves the toilet, semaphore is increased to 1 (one free
key), and given to the next person in the queue.

Pros & Cons
Paper by Edward Lee, 2006
• The author argues:
– “From a fundamental perspective, threads are seriously flawed as a computation
model”
– “Achieving reliability and predictability using threads is essentially impossible for
many applications”
• The main points:
– Our abstraction for concurrency does not even vaguely resemble the physical world.
– Threads are dominating but not the best approach in every situation
– Yet threads are suitable for embarrassingly parallel applications

Conclusions
The logic of the paper:
– Threads are nondeterministic
– Why shall we use nondeterministic mechanisms to achieve deterministic aims??
– The job of the programmer is to prune this nondeterminism.
– This leads to poor results

Be wise

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

